FAN-tastiK (mrcynognathus) wrote,
FAN-tastiK
mrcynognathus

Categories:

I-d диаграмма для начинающих (ID диаграмма состояния влажного воздуха для чайников)

После прочтения данной статьи, рекомендую прочитать статью про энтальпию, скрытую холодопроизводительность и определение количества конденсата, образующегося в системах кондиционирования и осушения: http://mrcynognathus.livejournal.com/7758.html

Доброго времени суток уважаемые начинающие коллеги!

В самом начале своего профессионального пути я наткнулся на данную диаграмму. При первом взгляде она может показаться страшноватой, но если разобраться в главных принципах, по которым она работает, то можно её и полюбить :D. В быту она называется и-д диаграмма.

В данной статье я попытаюсь просто(на пальцах) объяснить основные моменты, чтобы вы потом отталкиваясь от полученного фундамента самостоятельно углубились в данную паутину характеристик воздуха.

Примерно так она выглядит в учебниках. Как-то жутковато становится.



(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)


Я уберу все то лишнее, что не будет мне нужным для моего объяснения и представлю и-д диаграмму в таком виде:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)


Все равно еще не совсем понятно, что это такое. Разберем её на 4 элемента:

Первый элемент – влагосодержание (D или d). Но прежде чем я начну разговор об влажности воздуха в целом, я бы хотел кое о чем с вами договориться.

Давайте договоримся “на берегу” сразу об одном понятии. Избавимся от одного прочно засевшего в нас (по крайней мере, в меня) стереотипа о том, что такое пар. С самого детства мне показывали на кипящую кастрюлю или чайник и говорили, тыкая пальцем на валящий из сосуда “дым”: “ Смотри! Вот это пар”. Но как многие, дружащие с физикой люди, мы должны понимать, что “Водяной пар — газообразное состояние воды. Не имеет цвета, вкуса и запаха”. Это всего лишь, молекулы H2O в газообразном состоянии, которых не видно. А то что мы видим, валящее из чайника – это смесь воды в газообразном состоянии(пар) и “капелек воды в пограничном состоянии между жидкостью и газом”, вернее видим мы последнее (так же, с оговорками, можно назвать то что мы видим - туманом). В итоге мы получаем, что в данный момент, вокруг каждого из нас находится сухой воздух (смесь кислорода, азота…) и пар (H2O).

Так вот, влагосодержание говорит нам о том, сколько этого пара присутствует в воздухе. На большинстве и-д диаграмм данная величина измеряется в [г/кг], т.е. сколько грамм пара(H2O в газообразном состоянии) находится в одном килограмме воздуха (1 кубический метр воздуха в вашей квартире весит около 1,2 килограмма). В вашей квартире для комфортных условий в 1 килограмме воздуха должно быть 7-8 грамм пара.

На и-д диаграмме влагосодержание изображается вертикальными линиями, а информация о градации расположена в нижней части диаграммы:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)


Второй важный для понимания элемент – температура воздуха (T или t). Думаю здесь ничего объяснять не нужно. На большинстве и-д диаграмм данная величина измеряется в градусах Цельсия [°C]. На и-д диаграмме температура изображается наклонными линиями, а информация о градации расположена в левой части диаграммы:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)


Третий элемент ИД-диаграммы – относительная влажность (φ). Относительная влажность, это как раз та влажность, о которой мы слышим из телевизоров и радио, когда слушаем прогноз погоды. Измеряется она в процентах [%].

Возникает резонный вопрос: “Чем отличается относительная влажность от влагосодержания?” На данный вопрос я отвечу поэтапно:

Первый этап:

Воздух способен вмещать в себя определенное количество пара. У воздуха есть определенная  “паровая грузоподъемность”. Например, в вашей комнате килограмм воздуха может “взять на свой борт” не больше 15 грамм пара.

Предположим, что в вашей комнате комфортно, и в каждом килограмме воздуха, находящегося в вашей комнате, имеется по 8 грамм пара, а вместить каждый килограмм воздуха в себя может по 15 грамм пара. В итоге мы получаем, что в воздухе находится 53,3% пара от максимально возможного, т.е. относительная влажность воздуха - 53,3%.

Второй этап:

Вместимость воздуха различна при разных температурах. Чем выше температура воздуха, тем больше пара он может в себя вместить, чем ниже температура, тем меньше вместимость.

Предположим, что мы нагрели воздух в вашей комнате обычным нагревателем с +20 градусов до +30 градусов, но при этом количество пара в каждом килограмме воздуха осталось прежним – по 8 грамм. При +30 градусах воздух может “взять себе на борт” до 27 грамм пара, в итоге в нашем нагретом воздухе – 29,6% пара от максимально возможного, т.е. относительная влажность воздуха - 29,6%.

Тоже самое и с охлаждением. Если мы охладим воздух до +11 градусов, то мы получим “грузоподъемность” равную 8,2 грамм пара на килограмм воздуха и относительную влажность равную 97,6%.

Заметим, что влаги в воздухе было одинаковое количество – 8 грамм, а относительная влажность прыгала от 29,6% до 97,6%. Происходило это из-за скачков температуры.

Когда вы зимой слышите о погоде по радио, где говорят, что на улице минус 20 градусов и влажность 80%, то это значит, что в воздухе около 0,3 граммов пара. Попадая к вам в квартиру этот воздух нагревается до +20 и относительная влажность такого воздуха становится равна 2%, а это очень сухой воздух (на самом деле в квартире зимой влажность держится на уровне 10-30% благодаря выделениям влаги из сан-узлов, из кухни и от людей, но что тоже ниже параметров комфорта).

Третий этап:

Что произойдет, если мы опустим температуру до такого уровня, когда “грузоподъемность” воздуха будет ниже, чем количество пара в воздухе? Например, до +5 градусов, где вместимость воздуха равна 5,5 грамм/килограмм. Та часть газообразного H2O, которая не умещается в “кузов” (у нас это 2,5 грамм), начнет превращаться в жидкость, т.е. в воду. В быту особенно хорошо виден этот процесс, когда запотевают окна в связи с тем, что температура стекол ниже, чем средняя температура в комнате, на столько что влаге становится мало места в воздухе и пар, превращаясь в жидкость, оседает на стеклах.
На и-д диаграмме относительная влажность изображается изогнутыми линиями, а информация о градации расположена на самих линиях:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)


Четвертый элемент ID диаграммы – энтальпия (I или i). В энтальпии заложена энергетическая составляющая тепловлажностного состояния воздуха. При дальнейшем изучении (за пределами этой статьи, например в моей статье про энтальпию http://mrcynognathus.livejournal.com/7758.html) стоит обратить на неё особое внимание, когда речь будет заходить об осушении и увлажнении воздуха. Но пока особого внимания на этом элементе мы заострять не будем. Измеряется энтальпия в [кДж/кг]. На и-д диаграмме энтальпия изображается наклонными линиями, а информация о градации расположена на самом графике (или слева и в верхней части диаграммы):







(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)


Дальше все просто! Пользоваться диаграммой легко! Возьмем, например, вашу комфортную комнату, в которой температура +20°С, и относительная влажность 50%. Находим пересечение этих двух линий (температуры и влажности) и смотрим сколько грамм пара в нашем воздухе.

Нагреваем воздух до +30°С - линия идет вверх, т.к. влаги в воздухе остается столько же, а увеличивается только температура, ставим точку, смотрим какая получается относительная влажность – получилось 27,5%.

Подпишись на мой
YouTube-канал FAN-tastiK - канал о проектировании Вентиляции, Кондиционирования и Отопления

Охлаждаем воздух до 5 градусов – опять же ведем вертикальную линию вниз, и в районе +9,5°С натыкаемся на линию 100% относительной влажности. Эта точка называется “точка росы” и в этой точке(теоретически, т.к. практически выпадение начинается чуть раньше) начинается выпадение конденсата. Ниже по вертикальной прямой(как раньше) мы не можем двигаться, т.к. в этой точке “грузоподъемность” воздуха при температуре +9,5°С максимальная. Но нам необходимо охладить воздух до +5°С поэтому мы продолжаем движение вдоль линии относительной влажности (изображено на рисунке ниже), пока не достигнем наклонной прямой линии +5°С. В итоге наша окончательная точка оказалась на пересечении линий температуры +5°С и линии относительной влажности 100%. Посмотрим сколько пара осталось в нашем воздухе – 5,4 грамма в одном килограмме воздуха. А остальные 2,6 грамма выделились. Наш воздух осушился.

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)


Другие процессы, которые можно выполнять с воздухом с помощью различных приборов (осушение, охлаждение, увлажнение, нагрев…) можно найти в учебниках.

Помимо точки росы – еще одной важной точкой является “температура мокрого термометра”. Данная температура активно используется в расчете градирен. Грубо говоря, это та точка, до которой может упасть температура предмета, если мы этот предмет обернем в мокрую тряпку и интенсивно начнем на него “дуть”, например, с помощью вентилятора. По этому принципу работает система терморегуляции человека.

Как найти эту точку? Для этих целей нам понадобятся линии энтальпии. Снова возьмем нашу комфортную комнату, найдем точку пересечения линии температуры +20°С, и относительной влажности 50%. Из этой точки необходимо прочертить линию, параллельную линиям энтальпии до линии влажности 100%(как на рисунке ниже). Точка пересечения линии энтальпии и линии относительной влажности и будет являться точкой мокрого термометра. В нашем случае из этой точки мы можем узнать, что в нашей комнате, таким образом, мы можем охладить предмет до температуры +14°С.
(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)
Луч процесса(угловой коэффициент, тепловлажностное отношение, ε) строится для того чтобы определить изменение воздуха от одновременного выделения неким источником(-ами) тепла и влаги. Обычно этим источником является человек. Очевидная вещь, но понимание процессов и-д диаграммы поможет обнаружить возможную арифметическую ошибку, если таковая случилась. Например, если вы наносите луч на диаграмму и при обычных условиях и наличии людей у вас уменьшается влагосодержание или температура, то здесь стоит задуматься и проверить расчеты.

В данной статье многое упрощено для лучшего понимания диаграммы на начальной стадии её изучения. Более точную, более подробную и более научную информацию необходимо искать в учебной литературе.

P.S. В некоторых источниках I-d(i-d) диаграмму именуют J-d(j-d) диаграммой, h-d диаграммой, диаграммой Молье и диаграммой Рамзина.

P.P.S Так же, в моем журнале есть еще одна моя статья, посвященная энтальпии, скрытой холодопроизводительности и определению количества конденсата, образующегося в системах кондиционирования и осушения:
http://mrcynognathus.livejournal.com/7758.html




Tags: i-d диаграмма
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 69 comments
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →